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Abstract—Ordinal classification is a form of multi-class
classification where there is an inherent ordering between the
classes, but not a meaningful numeric difference between them.
Although conventional methods, designed for nominal classes
or regression problems, can be used to solve the ordinal data
problem, there are benefits in developing models specific to this
kind of data.

This paper introduces a new rationale to include the in-
formation about the order in the design of a classification
model. The method encompasses the inclusion of consistency
constraints between adjacent decision regions. A new decision
tree and a new nearest neighbour algorithms are then designed
under that rationale. An experimental study with artificial and
real data sets verifies the usefulness of the proposed approach.

Keywords-Classification; ordinal data; decision tree; k-
nearest neighbour

I. INTRODUCTION

Predictive learning has traditionally been a standard in-
ductive learning, where different subproblem formulations
have been identified. One of the most representatives is
classification, consisting on the estimation of a mapping
from the feature space into a finite class space. Depending on
the cardinality of the finite class space we are left with binary
or multiclass classification problems. Finally, the presence
or absence of a “natural” order among classes will separate
nominal from ordinal problems.

Although two-class and nominal classification problems
have been dissected in the literature, only recently the ordinal
sibling started receiving the same level of attention, both in
the design of new learning formulations [1], [2] and in the
development of new assessment metrics [3], [4].

In this paper we first present a novel rationale to capture
and impose the order constraints in the design of a super-
vised classifier. The proposed formulation tries to objectify
the imprecise notion of natural order. A second contribution
of this paper lies on the instantiation of that underlying
principle in the design of a new decision tree and a new
nearest neighbour algorithms.

II. RELATED WORK

Some of the work on decision trees for ordinal data
consider problems that are monotone, i.e., all attributes
have ordered domains and if x, z are data points such that
x ≤ z (xi ≤ zi for each attribute i) then their labels
should satisfy λ(x) ≤ λ(z), where λ(.) is the labelling

function: the labelling is monotone. Potharst [5], [6], [7]
proposes a method that induces a binary decision tree from
a monotone dataset. Methods were also proposed for non-
monotone datasets (the most likely scenario in the presence
of noise) but the resulting tree may be non-monotone. We
will argue later the monotonicity is probably not the best
way of capturing the order relationships.

Kramer et al. [8] investigate the use of a learning algo-
rithm for regression tasks—more specifically, a regression
tree learner—to solve ordinal classification problems. In
this case each class needs to be mapped to a numeric
value. Kramer et al. [8] compare several different methods
for doing this. However, if the class attribute represents
a truly ordinal quantity—which, by definition, cannot be
represented as a number in a meaningful way—there is no
principled way of devising an appropriate mapping and this
procedure is necessarily ad hoc.

Frank and Hall [9] presented a simple method that enables
standard classification algorithms to make use of ordering
information in class attributes. By applying it in conjunction
with a decision tree learner, the authors show that it outper-
forms the naive approach, which treats the class values as
an unordered set. Compared to special-purpose algorithms
for ordinal classification the method has the advantage that
it can be applied without any modification to the underlying
learning scheme. The rationale encompasses using (K − 1)
standard binary classifiers to address the K-class ordinal
data problem. Toward that end, the training of the i-th
classifier is performed by converting the ordinal dataset
with classes C1, . . . , CK into a binary dataset, discriminating
C1, . . . , Ci against Ci+1, . . . , CK . To predict the class value
of an unseen instance, the (K − 1) outputs are combined
to produce a single estimation. Any binary classifier can be
used as the building block of this scheme. Observe that the
(K−1) classifiers are trained in an independent fashion. This
independence is likely to lead to intersecting boundaries, a
topic to which we will return further on in this paper.

The work on k-nearest neighbour for ordinal data seems
even scarcer. Besides the well-known adaptation of labelling
the test data with the median instead of the mode of
the k labels, the only work the authors are aware is the
modified nearest neighbour algorithm for the construction
of monotone classifiers from data [10]. Again, this work
continues to be limited by the assumption of monotonicity



in the input data.
We argue that current algorithms fail to incorporate appro-

priately the order information of the data, either because of
too restrictive or too loose assumptions. The order informa-
tion is a global property, i.e., it involves a relation between
all data, and should therefore be the result of optimizing
some global function.

III. CAPTURING THE ORDER CONSTRAINTS BETWEEN
CLASSES

Assume that examples in a classification problem come
from one of K ordered classes, labelled from C1 to CK ,
corresponding to their natural order. Unlike the monotone
learning problem, where both the input attributes and the
class attribute are assumed to be ordered, the setting con-
sidered in this work does not assume that the inputs are
ordered. Consider the two datasets in Figure 1. The data in

(a) (b)

Figure 1. Examples of sets of ordinal data.

Figure 1(a) is uniformly distributed in the unit-circle, with
the class y being assigned according to the radius of the
point: y =

⌈
3
√
x21 + x22

⌉
Each point in Figure 1(b) was assigned a class y from

the set {1, 2, 3, 4, 5}, according to

y = min
r∈{1,2,3,4,5}

{r : br−1 < 10(x1 − 0.5)(x2 − 0.5) + ε < br}

(b0, b1, b2, b3, b4, b5) = (−∞,−1,−0.1, 0.25, 1,+∞)
(1)

where ε ∼ N(0; 0.1252) simulates the possible existence of
error in the assignment of the true class to x.

In neither of the datasets the monotonicity constraint is
verified; however, we argue that these datasets are perfectly
representatives of an ordinal setting, where the order is not
captured directly in the input space, but in an implicit feature
space. In fact the dataset in Figure 1(b) has been used to
validate algorithms for ordinal data classification [11], [1].

How to capture then the order relation in the output? Let
f(x) be a decision rule that assigns each value of x to one

of the available classes1. Such a rule will divide the input
space into regions Rk called decision regions, such that
all points in Rk are assigned to class Ck. The boundaries
between decision regions are called decision boundaries or
decision surfaces. Note that each decision region need not
be contiguous but could comprise any number of disjoint
regions. Intuitively, for ordinal data, in a sufficiently small
neighbourhood of x, Vε(x), the decision function should only
take at most two consecutive values: max f(x)−min f(x) ≤
1. The motivation for this is that a small change in the input
data should not lead to a ‘big jump’ in the output decision.
Therefore, we say that a decision function is consistent
with an ordinal data classification setting in a point x0 if
∃ε > 0 ∀x ∈ Vε(x0) max f(x)−min f(x) ≤ 1. A decision
function is consistent in the whole input space if the above
condition is verified for every point in the input space:
∀x0∃ε > 0 ∀x ∈ Vε(x0) max f(x)−min f(x) ≤ 1. 2

Decision functions consistent with the ordinal setting lead
to the very pleasant result that a regionRi where one decides
for Ci can only be adjacent to regions Ri+1 and Ri−1 – see
Figure III.

(a) Regions consistent with
the ordinal setting.

(b) Regions inconsistent
with the ordinal setting.

Figure 2. Consequence of the consistency constraint in the arrangement
of the decision regions.

The rationale here introduced is a generalization of the
formulation of parallel boundaries adopted in linear SVMs
for ordinal data [12] and the non-intersecting boundaries
approach adopted in [1]. We also notice that the approach by
Frank and Hall [9] may lead to inconsistent solution under
the adopted formulation since the design of independent
classifiers will likely result in intersecting boundaries.

It is also interesting to establish a parallel with the
probabilistic framework introduced previously by Pinto da
Costa et al. [13]. The unimodal model assumes that for
any given point x the posterior probabilities p(Ck|x) follow
a unimodal distribution. Given a point x, if the highest
a posteriori probability is, for instance, p(Ck|x), then we

1A remark should be made. Since we are dealing with ordered classes,
we shall consider that the output of the decision function is one of the
K labels {C1, · · · , CK} or one number in {1, · · · ,K} resulting from the
bijective map g : {Ci}Ki=1 → {1, · · · ,K} which assigns the number k to
the class Ck , i.e., g(Ck) = k. The context should make it clear which of
the two output formats is being considered.

2This definition of consistency precludes decision functions such as
f(x) = 1, x < 0; f(x) = 2, x = 0; f(x) = 3, x > 0, where the region
corresponding to class 2 is a measure-zero set.



should have, given that there is an order relation between
the classes, p(C1|x) < · · · < p(Ck−1|x) < p(Ck|x) >
p(Ck+1|x) > · · · > p(CK |x): Ck−1 and Ck+1 are closer to
Ck and therefore the second highest a posteriori probability
should be attained in one of these classes, see Figure 3(b).
Had one used a classifier which does not take into account
the order relation between the classes, the second highest
a posteriori probability can be, for instance, p(Ck−2|x), see
Figure 3(a).

P(C2|x)

P(C3|x)
P(C4|x)

P(C5|x)

P(C1|x)

R4 R3
R2

(a) Illustrative posteriori class dis-
tribution for a conventional nomi-
nal data problem.
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(b) Illustrative posteriori class dis-
tribution for the unimodal model
for ordinal data.
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(c) Illustrative posteriori class dis-
tribution sufficient to assure the
consistency property for ordinal
data.

Figure 3. Illustrative posteriori class distributions for different models.

While the unimodal model imposes an order relationship
between any two consecutive class probabilities, such a strict
condition is not required to observe the consistency property
we introduce in this work. In fact, the consistency property
will be observed if the following conditions, in-between the
conventional formulation for nominal data and the unimodal
model, are true:

p(Ck|x) > p(Ck−1|x) > p(Ci|x), ∀ 1 < i < k − 1

p(Ck|x) > p(Ck+1|x) > p(Ci|x), ∀ k + 1 < i < K
(2)

Intuitively, one just needs to impose that the second higher
probability is the ‘right’ one. This is sufficient (although
not necessary) to assure that, at the decision boundaries the
decision rule will change for an adjacent class.

IV. IMPOSING THE ORDINAL CONSTRAINTS IN A
DECISION FUNCTION

Consistency is a global property, i.e., it involves a relation
between different decision regions of the space. A key
challenge is how to use this information during the design
process of a learning algorithm. In this section we consider
that a decision function has already been obtained by,
possibly, standard methods and use the consistency property
to relabel the decision regions.

It is convenient at this point to define some notation
to describe the assignment of labels to different decision

regions. Let Rn, n = 1, · · · , N , represent the contiguous
decision regions created by some model3. For each region
Rn we introduce a corresponding set of binary indicator
variables xn,k ∈ {0, 1}, where k = 1, · · · ,K−1 describing
which of the K ordinal labels is assigned to region Rn,
so that if data points in Rn are assigned the label k then
xn,j = 1 for j < k, and xn,j = 0 otherwise. So, for
instance if we have a setting with 5 classes, K = 5, and
to a particular region happens to be assigned the label 3,
then x will be represented by x =

[
1 1 0 0

]t
. Note that

this is different from the often used 1-of-K coding scheme
and we find it more convenient for the introduction of the
constraints in what follows.

In ordinal data settings, the loss associated with a region
Rn when deciding for class Ck is usually captured with the
absolute error, the sum over all points lying in Rn of the
absolute difference between the true class of the point and
the predicted class for the region:

cn,k =

K∑
i=1

|i− k|pn,i,

where pn,i, n = 1, · · · , N , i = 1, · · · ,K represent the
number of observations (from the data used in creating the
region by some learning algorithm) from class k satisfying
the conditions for region Rn, (that is, lying inside Rn).
Nevertheless, the following model is generic for any costs
cn,k.

The optimal labelling of the regions can then be found by
minimizing the following objective function

J =

N∑
n=1

K∑
k=1

cn,k(xn,k−1 − xn,k), (3)

where the constants xn,0 = 1 and xn,K = 0 have been
introduced for notational convenience, with the constraints

xn,k+1−xn,k ≤ 0, k = 1, · · · ,K−2, n = 1, · · · , N (4)

and

xn,k ∈ {0, 1}, k = 1, · · · ,K − 1, n = 1, · · · , N (5)

It is easily seen that Eq. (3) can be rewritten as

J =

N∑
n=1

{
cn,1 +

K−1∑
k=1

xn,k(cn,k+1 − cn,k)

}
, (6)

Without any constraints relating the labels of the regions,
the optimization of the loss J over the whole space leads to
the standard solution of predicting the median of the values
in each region.

3Note the change of notation: so far we have used Rk to represent the
decision region, contiguous or not, corresponding to class Ck . From now on
Rn just represents a continuous region of the space with all points inside
that region being assigned the same class. Therefore, different regions Rn

and Rm may be assigned the same class and the number of regions is
likely greater than the number of classes.



Now, we want to impose that adjacent regions have labels
that differ at most by one. Therefore we are led to the
optimization of the loss of the decision function constrained
by the consistency of it. Consistency imposes that, for
any pair of adjacent regions Rn and Rn′ , the following
inequality must be verified:∣∣∣∣∣(1 +

K−1∑
k=1

xn,k)− (1 +

K−1∑
k=1

xn′,k)

∣∣∣∣∣ ≤ 1 (7)

Inequality (7) can be written as

K−1∑
k=1

xn,k −
K−1∑
k=1

xn′,k ≤ 1

K−1∑
k=1

xn′,k −
K−1∑
k=1

xn,k ≤ 1

(8)

The optimization of (6), subject to constraints (4), (5)
and (8) constitutes a linear binary integer programming
problem.

Although the resulting constraint matrix is not totally
unimodular (which would allow the relaxation of the linear
binary integer programming problem to a much easier linear
programming problem), we found experimentally that the
actual shape and sparsity of the constraint matrix of typical
problems favour the efficiency of the algorithm. Neverthe-
less, further research on the computational complexity of the
method is required.

A. Algorithms for solving the 0-1 linear model

In this section we focus on two algorithms for solving
the 0-1 linear model. Although for small problems the 0-
1 formulation can be used directly, this approach becomes
prohibitive with the increase of the dimension of the data,
the increase of the size of training set or with the increase
of the number of classes.

1) Iterative algorithm: The observation that decision re-
gions for class Ck are more likely to be adjacent to regions
labelled for Cj with |j−k| small, suggests a block coordinate
optimization procedure, where the consistency constraints
are imposed iteratively to a different subset of regions.

Initializing the region labels to the conventional value
obtained from the median label of the points assigned to the
region, we propose to iteratively select a subset of regions
with labels in the interval Cj , · · · , Cj+W−1 and re-label
those regions with the output of the optimization problem
restricted to those regions. The simplest solution is to simply
iterate j from 1 to K−W+1. Note that if we select W = K
we would be solving the complete original problem; if we
select W = 2 no constraint will be imposed and one stays
in the solution without consistency constraints.

Note that the global consistency of the solution obtained
at the end of the iterative process is not assured.

2) Approximation algorithm based on LP relaxation:
A relaxation procedure starts by choosing and solving a
relaxation problem for obtaining an approximated solution;
then, it uses a rounding procedure to extract a feasible
solution to the original 0-1 problem from the approximate
solution. The relaxation step has an important role in the
whole algorithm. For example, if the approximation solution
is in fact feasible for the original problem, then it is
exactly an optimal solution. On the other hand, when the
approximation solution is not feasible regarding the original
problem, we have to use a rounding procedure to extract a
feasible solution.

The relaxed model for our 0-1 problem is obtained by
replacing the constraint (5) by

xn,k ∈ [0, 1], k = 1, · · · ,K − 1, n = 1, · · · , N (9)

Solving now (6), subject to constraints (4), (9) and (8) finds
the solution to our relaxed problem.

Noting now that (4), together with the monotonicity of the
round function, assures that the rounded solution is a valid
coding for the class — although not necessarily a feasible
solution since the constraints (8) may not be observed —
, that terminates the relaxation method. Again, the global
consistency of the solution obtained at the end of the iterative
process is not assured.

V. AN ORDINAL DECISION TREE

The root of the majority of the work on decision trees is
in Breiman’s work [14] and Quinlan’s ID3 algorithm [15]
from statistical and machine learning perspectives. Decision
trees are hierarchical decision systems in which conditions
are sequentially tested until a class is accepted. To this end,
the feature space is split into unique regions, corresponding
to the classes, in a sequential manner. Upon the arrival of
a feature vector, the searching of the region to which the
feature vector will be assigned is achieved via a sequence
of decisions along a path of nodes of an appropriately
constructed tree. The most popular schemes among decision
trees are those that split the space into hyperrectangles
with sides parallel to the axes. The sequence of decisions
is applied to individual features, and the questions to be
answered are of the form “is feature xk ≤ α ?” where α is
a threshold value. Such trees are known as ordinary binary
classification trees (OBCTs).

An algorithm for the induction of a decision tree from a
training dataset contains the following ingredients:
• a splitting rule: at each node, the set of candidate

questions to be asked has to be decided. Each ques-
tion corresponds to a specific binary split into two
descendant nodes. A splitting criterion must be adopted
according to which the best split from the set of
candidate ones is chosen.

• a stopping rule: A stop-splitting rule is required that
controls the growth of the tree and a node is declared



as a terminal (leaf). The most commonly used approach
is to grow the tree up to a large size first and then
prune nodes according to a pruning criterion. A number
of pruning criteria have been suggested. A commonly
approach is to combine an estimate of the error prob-
ability with a complexity measuring term (e.g. number
of terminal nodes) [16].

• a labelling rule: a rule is required that assigns each leaf
to a specific class.

A. Imposing the ordinal constraints in a decision tree: the
oTree model

If the consistency is measured for each possible split
during tree construction, the order in which nodes are
expanded becomes important. For example, a depth-first
search strategy will generally lead to a different tree than
a breadth-first search. Also, and perhaps more importantly,
a non-consistent tree may become consistent after additional
splits.

In view of these difficulties, in this work we consider
imposing consistency only during the labelling assignment
step. Future work will address other mechanisms. Consider
an already constructed tree, using any standard technique
such as C4.5 [17], perhaps already pruned according to a
pre-specified strategy.

We can now apply the rationale developed in the previous
section to the regions corresponding to each leaf of the tree.
In this scenario, each region is a hyperrectangle. In Figure 4
is depicted the decision regions obtained by growing a tree
without pruning from 300 random observations generated
according to Eq. (1). In Figure 4(b) is visible the benefits
of imposing the consistency constraints by relabeling the
leaves. It is also interesting to interpret the consistency
constraints as a regularization factor in the tree building
process.

(a) Without consistency
constraints.

(b) With consistency constraints.

Figure 4. Decision regions for a fully-grown tree with 300 random
observations generated according to Eq. (1).

VI. AN ORDINAL K NEAREST-NEIGHBOUR: THE OKNN
MODEL

The k-nearest neighbour algorithm is amongst the simplest
of all machine learning algorithms. This algorithm belongs
to a set of techniques called Instance Based Learning. It

starts by extending the local region around a data point until
the kth nearest neighbour is found. For nominal data, an
object is classified by a majority vote scheme, with the object
being assigned to the class most common amongst its k-
nearest neighbours; for ordinal data, the median is usually
preferred.

In the simplest case, consider k = 1 and a given set of
points S. Each training point xi defines a Voronoi cell Ri,
a convex polytope, consisting of all points closer to xi than
to any other training point xj . The label assigned to a given
Voronoi cell Ri is the label of the corresponding training
point xi.

The consistency constraints for ordinal data introduced
before are also easily integrated in the 1-NN classifier. Now
the regions involved in the optimization process are the
Voronoi cells; the cost cn,k is simply cn,k = |k − i|, where
i is the class of the training point in the cell. The adjacency
can be tested by testing the adjacency of the corresponding
polytopes.

The extension to the k-NN can be accomplished in two
ways. One option is to apply the consistency constraints
directly on the generalized Voronoi cells corresponding to
the k-NN as a post-processing, identically to what was just
proposed for the 1-NN. Another option is to use the above
procedure on 1-NN as a pre-processing before applying a
standard k-NN. It is possible to show that, under some
conditions, the resulting decision function is consistent.

Consider the neighbourhood Vk(x) containing the k near-
est training points of the (test) point x. Let m be the
minimum and M the maximum of those k labels. Under the
assumption that the training points have been relabelled by
imposing the consistency constraints in the 1-NN classifier,
the set of the k labels contains every label between m and
M . Consider the Voronoi cells from 1-NN that intersect
Vk(x) and a graph with a vertex in each of the k training
points and an edge for each pair of adjacent training points
(for which the cells are adjacent). Then there is a path
between any pair of vertices, and in particular between a
point labelled with m and a point labelled with M . Since
the Voronoi cells are consistent, the path must go throw each
possible label between m and M . Now, adjacent regions in
the k-NN differing at a single of the k points will then also
differ at most by one in the median of the k points. When
adjacent regions differ at more than 1 of the k point due
to, for instance, coincident training points, the consistency
is not assured.

VII. EXPERIMENTAL STUDY

We started by conducting an empirical comparison in
an artificial dataset between a standard classification tree
(cTree), a standard kNN and the oTree and okNN models
proposed in this work. The comparison study is based on the
Mean Absolute Error (MAE), which is the most commonly
used for ordinal data. The experimental study was conducted



in Matlab R2009b. The conventional tree model was based
on the classregtree class, with the labelling rule adapted
to use the median of the values instead of the mode. The
kNN used the knnclassify function.

We began by generating 1000 examples from the dataset
presented in Section III, given by Eq. (1), and randomly split
50 times the generated dataset into training and test sets.
Each model parameterization, namely the pruning level of
the tree and the size k of the neighbourhood of kNN was se-
lected by 5-fold cross-validation on the training set. Results
were averaged over the 50 setups in order to get more robust
estimates. This was repeated taking ` ∈ {100, 300, 500} for
size of the training set and 1000 − ` for the test set size.
The small size of the dataset allowed us to use directly the
0-1 exact formulation for the relabeling procedure. The test
results for are shown in Table I. It can be seen that there

Model
Training sets size

` = 100 ` = 300 ` = 500

cTree 0.47 (0.11) 0.30 (0.05) 0.22 (0.03)
oTree 0.40 (0.10) 0.27 (0.04) 0.22 (0.02)
kNN 0.29 (0.03) 0.24 (0.02) 0.22 (0.02)
okNN 0.28 (0.02) 0.23 (0.02) 0.21 (0.01)

Table I
MEAN (STANDARD DEVIATION) OF MER OVER 50 SETUPS OF THE

SYNTHETIC DATASET.

are no significant differences between the conventional and
the proposed models, with only a slightly advantage for the
latter. Nevertheless, the proposed models also show higher
stability (lower variance) and produce smaller and consistent
models.

We continue the experimental study by applying the
algorithms under evaluation to the classification of real data,
mostly available on the Weka datasets website.4 and UCI
machine learning repository. The SWD dataset contains real-
world assessments of qualified social workers regarding the
risk facing children if they stayed with their families at home
and is composed by 10 features and 4 classes. The LEV
dataset contains examples of anonymous lecturer evalua-
tions, taken at the end of MBA courses and is composed by 4
features and 5 classes. Both datasets contain 1000 examples.
The third dataset, BCCT, encompasses 960 observations
taken from our previous work [18] and expresses the aes-
thetic evaluation of Breast Cancer Conservative Treatment.
For each patient submitted to BCCT, 30 measurements were
recorded, capturing visible skin alterations or changes in
breast volume or shape. Only the 5 features selected in [18]
were used in the experimental work. The aesthetic outcome
of the treatment for each and every patient was classified
in one of the four categories: Excellent, Good, Fair and
Poor. Finally, the Diabetes dataset represents a regression

4for more information, please see: http://www.cs.waikato.ac.nz/∼ml/
weka/index datasets.html.

prediction problem converted to an ordinal quantity using
equal-frequency binning, dividing the range of observed
values into 5 intervals so that the number of instances in
each interval is approximately constant. The dataset includes
43 observations with 2 features. The test results are shown
in Table II, for the MER criterion.

Model
Datasets

SWD LEV BCCT Diabetes
cTree 0.48 (0.03) 0.45 (0.02) 0.45 (0.04) 0.71 (0.05)
oTree 0.47 (0.03) 0.45 (0.02) 0.42 (0.05) 0.68 (0.04)
kNN 0.57 (0.03) 0.58 (0.05) 0.53 (0.04) 0.78 (0.06)
okNN 0.57 (0.04) 0.56 (0.04) 0.54 (0.02) 0.72 (0.04)

Table II
MEAN (STANDARD DEVIATION) OF MER OVER 50 SETUPS OF THE

DATASETS.

Again, the same relative behaviour is observed in these
real datasets. It is also visible that the decision tree usually
attains better results than the k-nearest neighbour. Even if the
proposed framework seems to help improve the performance
of a model, that did not always happen. We conjecture that
the use of the consistency property only as a post-processing
operation may lead to ‘over-regularized’ or over-smoothed
decision functions, effectively hurting or attenuating the
positive impact on the generalization performance of the
model.

Although this has been a limited experimental study, it
provides a first validation of the proposed method. The
proposed method is likely to produce simpler, consistent and
easier to interpret models. Further experiments, including
large datasets, are required and will be conducted in a future
research.

VIII. CONCLUSIONS

We have provided a new rationale for the incorporation of
the order information in the design of classification models
intended for ordinal data. The fundamental idea is that
adjacent decision region should have equal or consecutive
labels. The rationale was then used as a post-processing
mechanism of a standard decision tree and as a pre- or post-
processing step for the k-NN. We have conducted several
experiments where our method was tested against standard
models from where our method was derived. The results
show some advantages of the proposed method.

These initial investigations support further work in this
direction. In future extensions of this work, in addition to
a stronger experimental validation, we intend to quantify
the regularization effect of the ordinal constraints and the
generalization bounds of the method. We will also analyse
the computational efficiency of the binary optimization pro-
cedure involved in the relabeling of the leaves. Extensions
of the work may encompass the adaptation of the pruning
or splitting strategies of tree models. Dyadic trees [19] may
provide an adequate environment to research some of the



previous topics. In fact, although the proposed consistency
underlying principle has been applied as a pre- and post-
processing of the result of a standard method, nothing
prevents its application during the design of the decision
model. The connection established with the unimodal model
may provide some suggestions in that direction.
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